Probabilidades de Riesgo de Exposición al Mercurio en Comunidades Pesqueras de la Cuenca Grandes Lagos de Nicaragua

Autores/as

  • Francisco José Picado Pavón Universidad Nacional Autónoma de Nicaragua, Managua. Centro para la Investigación en Recursos Acuáticos de Nicaragua, UNAN-Managua/CIRA, Nicaragua. https://orcid.org/0000-0002-3698-5214
  • Rommel José Lacayo Morales Universidad Nacional Autónoma de Nicaragua, Managua. Centro para la Investigación en Recursos Acuáticos de Nicaragua, UNAN-Managua/CIRA, Nicaragua. https://orcid.org/0000-0002-3585-6568
  • Xaviera de Jesús Méndez Doña Universidad Nacional Autónoma de Nicaragua, Managua. Centro para la Investigación en Recursos Acuáticos de Nicaragua, UNAN-Managua/CIRA, Nicaragua. https://orcid.org/0000-0001-6568-2717

DOI:

https://doi.org/10.5377/esteli.v13i50.18482

Palabras clave:

Exposición, lago, mercurio, peces, riesgo

Resumen

La contaminación ambiental por mercurio (Hg) es altamente tóxica y resulta en el detrimento de los ecosistemas acuáticos, así como en efectos negativos en la salud humana. El objetivo de esta investigación fue evidenciar las probabilidades de riesgo que tienen las comunidades pesqueras de los Grandes Lagos de Nicaragua, al consumir pescado con Hg procedente de estos ecosistemas. Para esto fue necesario diagnosticar la presencia de mercurio en el Lago Cocibolca. Entre enero y junio de 2022, se procedió a la colecta de agua y sedimentos del lago, se adquirieron pescados de acopios locales, se analizaron los niveles de Hg en las aguas, sedimentos y pescado y se aplicaron encuestas a cuatro comunidades de la cuenca de los Grandes Lagos para obtener información sobre el consumo de pescado y datos antropométricos para el análisis del riesgo. Los resultados muestran una baja biodisponibilidad del Hg en los Grandes Lagos de Nicaragua, sin embargo, el contenido de Hg en los pescados analizados es superior al de pescados proveniente de ambientes no contaminados (<0,008) mg/kg. El contenido de Hg en los peces (0,008 a 0,475) mg Hg/kg es significativamente menor (p<0,0001, α =0,05) en el Lago Cocibolca. Afortunadamente, las probabilidades del riesgo asociada al consumo de pescado son bajas (<4,4%) para las comunidades estudiadas de la cuenca del Lago Cocibolca. Sin embargo, las probabilidades de riesgo para las comunidades pesqueras de la cuenca del Lago Xolotlán sugieren vigilar la inocuidad, en cuanto al contenido de Hg, de estos recursos hidrobiológicos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Astorqui, I. (1976). Peces de la cuenca de los grandes lagos de Nicaragua. Investigations of the Ichthyofauna of Nicaraguan Lakes. https://digitalcommons.unl.edu/ichthynicar/14

Backstrom, C. H., Buckman, K., Molden, E., & Chen, C. Y. (2020). Mercury Levels in Freshwater Fish: Estimating Concentration with Fish Length to Determine Exposures Through Fish Consumption. Archives of Environmental Contamination and Toxicology, 78(4), 604-621. https://doi.org/10.1007/s00244-020-00717-y

Bale, A. E. (2000). Modeling Aquatic Mercury Fate in Clear Lake, Calif. Journal of Environmental Engineering, 126(2), 153-163. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:2(153)

Barone, G., Storelli, A., Garofalo, R., Mallamaci, R., & Storelli, M. M. (2022). Residual Levels of Mercury, Cadmium, Lead and Arsenic in Some Commercially Key Species from Italian Coasts (Adriatic Sea): Focus on Human Health. Toxics, 10(5), Article 5. https://doi.org/10.3390/toxics10050223

Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: A general review. Chemosphere, 40(12), 1335-1351. https://doi.org/10.1016/S0045-6535(99)00283-0

Cavalleri, A., & Gobba, F. (1998). Reversible Color Vision Loss in Occupational Exposure to Metallic Mercury. Environmental Research, 77(2), 173-177. https://doi.org/10.1006/enrs.1997.3814

CCME. (2003). Canadian Water Quality Guidelines for the Protection of Aquatic Life—Mercury—Inorganic mercury and methylmercury. https://ccme.ca/en/res/mercury-inorganic-mercury-and-methylmercury-en-canadian-water-quality-guidelines-for-the-protection-of-aquatic-life.pdf

Chen, L., Li, F., Huang, W., Li, Z., & Chen, M. (2019). Evaluation of Mercury Transformation and Benthic Organisms Uptake in a Creek Sediment of Pearl River Estuary, China. Water, 11(6), Article 6. https://doi.org/10.3390/w11061308

Cohen, J. T., Bellinger, D. C., & Shaywitz, B. A. (2005). A Quantitative Analysis of Prenatal Methyl Mercury Exposure and Cognitive Development. American Journal of Preventive Medicine, 29(4), 353-353.e24. https://doi.org/10.1016/j.amepre.2005.06.007

Compeau, G. C., & Bartha, R. (1985). Sulfate-Reducing Bacteria: Principal Methylators of Mercury in Anoxic Estuarine Sediment. Applied and Environmental Microbiology. https://doi.org/10.1128/aem.50.2.498-502.1985

de Matos, L. S., Correa, A. S. A. S., da Silva, S. A. A., Muniz, C. C., & Ignacio, A. R. A. (2021). Mercury concentrations in fish and human health assessment in preflood phase of a hydro dam in Teles Pires River, Southern Brazilian Amazon. Elementa: Science of the Anthropocene, 9(1), 020. https://doi.org/10.1525/elementa.2021.020

Dórea, J. G., & Marques, R. C. (2016). Mercury levels and human health in the Amazon Basin. Annals of Human Biology, 43(4), 349-359. https://doi.org/10.1080/03014460.2016.1192682

Effler, S. W., & Bloom, N. S. (1990). Seasonal variability in the Mercury speciation of Onondaga Lake (New York). Water, Air, and Soil Pollution, 53(3), 251-265. https://doi.org/10.1007/BF00170741

Gill, G. A., & Bruland, K. W. (1990). Mercury speciation in surface freshwater systems in California and other areas. Environmental Science & Technology, 24(9), 1392-1400. https://doi.org/10.1021/es00079a014

Gilmour, C. C., & Henry, E. A. (1991). Mercury methylation in aquatic systems affected by acid deposition. Environmental Pollution, 71(2), 131-169. https://doi.org/10.1016/0269-7491(91)90031-Q

Glover, J. B., Domino, M. E., Altman, K. C., Dillman, J. W., Castleberry, W. S., Eidson, J. P., & Mattocks, M. (2010). Mercury in South Carolina Fishes, USA. Ecotoxicology, 19(4), 781-795. https://doi.org/10.1007/s10646-009-0455-6

Grandjean, P., Budtz-Jørgensen, E., White, R. F., Jørgensen, P. J., Weihe, P., Debes, F., & Keding, N. (1999). Methylmercury Exposure Biomarkers as Indicators of Neurotoxicity in Children Aged 7 Years. American Journal of Epidemiology, 150(3), 301-305. https://doi.org/10.1093/oxfordjournals.aje.a010002

Harada, M. (1995). Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Critical Reviews in Toxicology. https://doi.org/10.3109/10408449509089885

Hina, N., Riaz, R., Ali, U., Rafique, U., & Malik, R. N. (2021). A Quantitative Assessment and Biomagnification of Mercury and Its Associated Health Risks from Fish Consumption in Freshwater Lakes of Azad Kashmir, Pakistan. Biological Trace Element Research, 199(9), 3510-3526. https://doi.org/10.1007/s12011-020-02479-z

Lacayo, M., Cruz, A., Lacayo, J., & Fomsgaard, I. (1991). Mercury contamination in Lake Xolotlán (Managua). Hydrobiological Bulletin, 25(2), 173-176. https://doi.org/10.1007/BF02291251

Lawson, N. M., & Mason, R. P. (1998). Accumulation of mercury in estuarine food chains. Biogeochemistry, 40(2), 235-247. https://doi.org/10.1023/A:1005959211768

Li, Y., & Cai, Y. (2013). Progress in the study of mercury methylation and demethylation in aquatic environments. Chinese Science Bulletin, 58(2), 177-185. https://doi.org/10.1007/s11434-012-5416-4

Lindström, M. (2001). Distribution of particulate and reactive mercury in surface waters of Swedish forest lakes—An empirically based predictive model. Ecological Modelling, 136(1), 81-93. https://doi.org/10.1016/S0304-3800(00)00382-3

Magour, S., Mäser, H., & Greim, H. (1987). The Effect of Mercury Chloride and Methyl Mercury on Brain Microsomal Na + ‐K + ‐ATPase after Partial Delipidisation with Lubrol®. Pharmacology & Toxicology, 60(3), 184-186. https://doi.org/10.1111/j.1600-0773.1987.tb01730.x

Mills, N., Weber, M. J., Pierce, C. L., & Cashatt, D. (2019). Factors influencing fish mercury concentrations in Iowa rivers. Ecotoxicology, 28(2), 229-241. https://doi.org/10.1007/s10646-019-02017-1

MINSA, MARENA, CIRA/UNAN-Managua, & JICA. (2017). Repùblica de Nicaragua Proyecto para el Fortalecimiento de Capacidades en el Estudio y Análisis del Mercurio Informe Final del Proyecto. https://openjicareport.jica.go.jp/pdf/1000033590_01.pdf

Morel, F. M. M., Kraepiel, A. M. L., & Amyot, M. (1998). THE CHEMICAL CYCLE AND BIOACCUMULATION OF MERCURY. Annual Review of Ecology, Evolution, and Systematics, 29(Volume 29, 1998), 543-566. https://doi.org/10.1146/annurev.ecolsys.29.1.543

Myers, G. J., Davidson, P. W., Cox, C., Shamlaye, C., Cernichiari, E., & Clarkson, T. W. (2000). Twenty-Seven Years Studying the Human Neurotoxicity of Methylmercury Exposure. Environmental Research, 83(3), 275-285. https://doi.org/10.1006/enrs.2000.4065

Picado, F., Mendoza, A., Cuadra, S., Barmen, G., Jakobsson, K., & Bengtsson, G. (2010). Ecological, Groundwater, and Human Health Risk Assessment in a Mining Region of Nicaragua. Risk Analysis, 30(6), 916-933. https://doi.org/10.1111/j.1539-6924.2010.01387.x

PNUMA. (2005). EVALUACIÓN MUNDIAL SOBRE EL MERCURIO. https://saludsindanio.org/sites/default/files/documents-files/1401/Evaluacion_Mundial_Mercurio.pdf

Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter––a review. Chemosphere, 55(3), 319-331. https://doi.org/10.1016/j.chemosphere.2003.11.011

Slotton, D., Ayers, S., Suchanek, T., Weyand, R., & Liston, A. (2004). Mercury Bioaccumulation and Trophic Transfer in the Cache Creek Watershed, California, in Relation to Diverse Aqueous Mercury Exposure Conditions.

Watras, C. J., Back, R. C., Halvorsen, S., Hudson, R. J. M., Morrison, K. A., & Wente, S. P. (1998). Bioaccumulation of mercury in pelagic freshwater food webs. Science of The Total Environment, 219(2), 183-208. https://doi.org/10.1016/S0048-9697(98)00228-9

Watras, C. J., & Huckabee, J. W. (1994). Mercury Pollution Integration and Synthesis. CRC Press.

Watras, C. J., Morrison, K. A., Hudson, R. J. M., Frost, T. M., & Kratz, T. K. (2000). Decreasing Mercury in Northern Wisconsin: Temporal Patterns in Bulk Precipitation and a Precipitation-Dominated Lake. Environmental Science & Technology, 34(19), 4051-4057. https://doi.org/10.1021/es000991g

Wright, D. A., & Welbourn, P. (Eds.). (2002). Metals and other inorganic chemicals. En Environmental Toxicology (pp. 249-348). Cambridge University Press. https://doi.org/10.1017/CBO9780511805998.008

Yorifuji, T., Tsuda, T., Inoue, S., Takao, S., Harada*, M., & Kawachi, I. (2013). Critical Appraisal of the 1977 Diagnostic Criteria for Minamata Disease. Archives of Environmental & Occupational Health, 68(1), 22-29. https://doi.org/10.1080/19338244.2011.627894

Descargas

Publicado

08-08-2024

Cómo citar

Picado Pavón, F. J., Lacayo Morales, R. J., & Méndez Doña, X. de J. (2024). Probabilidades de Riesgo de Exposición al Mercurio en Comunidades Pesqueras de la Cuenca Grandes Lagos de Nicaragua. Revista Científica Estelí, 13(50), 180–197. https://doi.org/10.5377/esteli.v13i50.18482

Número

Sección

CIENCIAS AMBIENTALES

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.