Comprender la participación pública en las redes sociales gubernamentales: un enfoque basado en modelos de ecuaciones estructurales

Autores/as

DOI:

https://doi.org/10.5377/reice.v12i24.20096

Palabras clave:

Participación pública, redes sociales gubernamentales, modelado de ecuaciones estructurales, efectos de mediación

Resumen

El estudio investiga los determinantes de la participación pública en las plataformas de redes sociales del gobierno en Malasia, empleando el modelo de ecuaciones estructurales (SEM) para analizar las relaciones entre las variables clave. La investigación examina la influencia de la expectativa de desempeño, la expectativa de esfuerzo, el contenido percibido, la influencia social y las condiciones facilitadoras en la participación pública, al mismo tiempo que explora los efectos mediadores de la gratificación. El modelo de relación demuestra un ajuste sólido, respaldado por los valores del índice de ajuste comparativo (CFI) y del índice de Tucker-Lewis (TLI) cercanos a 1, lo que indica un alto grado de ajuste del modelo. Esto sugiere que el modelo captura con precisión las relaciones entre las variables observadas y sus constructos subyacentes. Además, los valores del error cuadrático medio de aproximación (RMSEA) y del residuo cuadrático medio estandarizado (SRMR) caen por debajo de los umbrales recomendados de 0,08, lo que confirma aún más la adecuación del modelo para representar la complejidad de las relaciones. entre las variables. Si bien el modelo estructural muestra valores de CFI y TLI ligeramente inferiores en comparación con el modelo de medición, lo que indica un margen potencial de mejora, los valores de RMSEA y SRMR se mantienen dentro de un rango aceptable. Esto sugiere que, si bien puede haber áreas para mejorar, el modelo estructural representa adecuadamente las relaciones entre las variables. Los resultados brindan información valiosa para los responsables de las políticas y las agencias gubernamentales que buscan optimizar sus estrategias de comunicación en las redes sociales y fomentar una mayor participación ciudadana.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alkraiji, A. I. (2021). An examination of citizen satisfaction with mandatory e-government services: comparison of two information systems success models. Transforming Government: People, Process And Policy, 15(1), 36-58. http://dx.doi.org/10.1108/TG-01-2020-0015

Alkhatib, G., & Bayouq, S. (2024). County Readiness for eTourism Using Systematic Gap Analysis: The Case of Jordan. European Journal of Studies in Management and Business, 29, 36-55. https://doi.org/10.32038/mbrq.2024.29.03

Alonso-Cañadas, J., Galán-Valdivieso, F., Saraite-Sariene, L., & Caba-Pérez, C. (2020). Committed to health: key factors to improve users’ online engagement through Facebook. International Journal Of Environmental Research And Public Health, 17(6), 1814. https://doi.org/10.3390%2Fijerph17061814

Babatunde, O. A. B. (2021). Adaptive capability, social media agility, ambidextrous marketing capability, and business survival: a mediation analysis. Marketing and Branding Research, 8(1), 31. https://eurokd.com/doi/10.33844/mbr.2021.60328

Baharuddin, G., Hilmiyah, N., Hubbansyah, A. K., & Syafiai, M. H. (2024). The Rise of Social Behavior in Social Media Marketing During Pandemic. European Journal of Studies in Management and Business, 30, 49-56. https://doi.org/10.32038/mbrq.2024.30.03

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588-606. https://doi.org/10.1037/0033-2909.88.3.588

Blumler, J. G., & Katz, E. (1974). The uses of mass communications: current perspectives on gratifications research. Sage Annual Reviews Of Communication Research Volume III. https://eric.ed.gov/?id=ED119208

Blut, M., Chong, A., Tsiga, Z., & Venkatesh, V. (2021). Meta-analysis of the unified theory of acceptance and use of technology (UTAUT): challenging its validity and charting A research agenda in the red ocean. Journal Of The Association For Information Systems, Forthcoming, 23(1), 13-95. http://dx.doi.org/10.17705/1jais.00719

bin Zakaria, M. F. Z., & Ahmad, M. Y. (2015). Online Incivility: The Shaping of Online Discussion by MalaysiaKini. Journal of Media and Information Warfare Vol.

Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21(2), 230-258. https://doi.org/10.1177/0049124192021002005

Chen, K. J., & Cheung, H. L. (2019). Unlocking the power of ephemeral content: The roles of motivations, gratification, need for closure, and engagement. Computers In Human Behavior, 97(7), 67-74. http://dx.doi.org/10.1016/j.chb.2019.03.007

Chen, Q., Min, C., Zhang, W., Wang, G., Ma, X., & Evans, R. (2020). Unpacking the black box: How to promote citizen engagement through government social media during the COVID-19 crisis. Computers In Human Behavior, 110, 106380. https://doi.org/10.1016/j.chb.2020.106380

Chen, Y. R. R. (2018). Consumer engagement in social media in China. The Handbook Of Communication Engagement, 475-489. http://dx.doi.org/10.1002/9781119167600.ch32

Cortina, J. M. (1993). What is the coefficient alpha? An examination of theory and applications. Journal Of Applied Psychology, 78(1), 98-104. https://doi.org/10.1037/0021-9010.78.1.98

Di Gangi, P. M., & Wasko, M. M. (2016). Social media engagement theory: Exploring the influence of user engagement on social media usage. Journal Of Organizational And End User Computing (JOEUC), 28(2), 53-73. http://dx.doi.org/10.4018/JOEUC.2016040104

Dhiman, N., Arora, N., Dogra, N., & Gupta, A. (2020). Consumer adoption of smartphone fitness apps: an extended UTAUT2 perspective. Journal Of Indian Business Research, 12(3), 363-388. http://dx.doi.org/10.1108/JIBR-05-2018-0158

Dominic, D., Gisip, I. A., Sahak, S. Z., & Lajuni, N. (2021). Trust and posted topic characteristics on governments social media communication success: an empirical study. Romanian Journal Of Information Technology And Automatic Control, 31(1), 29-40. http://dx.doi.org/10.33436/v31i1y202102

Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal Of Marketing Research, 18(3), 382-388. https://doi.org/10.2307/3150980

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis (8th Ed.). Cengage Learning EMEA.

Hair Jr., J. F., Howard, M. C., & Nitzl, C. (2020). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal Of Business Research, 109(C), 101-110. https://doi.org/10.1016/j.jbusres.2019.11.069

Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook (p. 197). Springer Nature. https://doi.org/10.1007/978-3-030-80519-7

Hariguna, T., Rahardja, U., Aini, Q., & Nurfaizah (2019). Effect of social media activities to determinants public participate intention of e-government. Procedia Computer Science, 161, 233-241. https://doi.org/10.1016/j.procs.2019.11.119

Hefler, M., Kerrigan, V., Grunseit, A., Freeman, B., Kite, J., & Thomas, D. P. (2020). Facebook-based social marketing to reduce smoking in Australia’s first nations communities: an analysis of reach, shares, and likes. Journal Of Medical Internet Research, 22(12), e16927. http://dx.doi.org/10.2196/16927

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal Of The Academy Of Marketing Science, 43(1), 115-135. http://dx.doi.org/10.1007/s11747-014-0403-8

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. http://dx.doi.org/10.1080/10705519909540118

Hujran, O., Abu-Shanab, E., & Aljaafreh, A. (2020). Predictors for the adoption of e-democracy: an empirical evaluation based on a citizen-centric approach. Transforming Government: People, Process And Policy, 14(3), 523-544. http://dx.doi.org/10.1108/TG-03-2019-0016

Hussain, A., & Shabir, G. (2020). Cognitive needs and use of social media: A comparative study of gratifications sought and gratification obtained. Information Discovery And Delivery, 48(2), 79-90. https://doi.org/10.1108/IDD-11-2019-0081

Hussein, R., & Hassan, S. (2017). Customer engagement on social media: how to enhance continuation of use. Online information review, 41(7), 1006-1028. https://doi.org/10.1108/OIR-02-2016-0047

Idemudia, E. C., Raisinghani, M. S., & Samuel-Ojo, O. (2018). The contributing factors of continuance usage of social media: An empirical analysis. Information Systems Frontiers, 20(6), 1267-1280. https://doi.org/10.1007/s10796-016-9721-3

Im, I., Hong, S., & Kang, M. S. (2011). An international comparison of technology adoption: Testing the UTAUT model. Information & Management, 48(1), 1-8. https://doi.org/10.1016/j.im.2010.09.001

Jöreskog, K. G., & Sörbom, D. (1984). Analysis of linear structural relationships by maximum likelihood, instrumental variables, and least squares methods.

Khadzali, N. R., & Zan, Z. M. (2019). Exploring e-participation policy and initiatives in Malaysia. International Journal Of Law, Government And Communication, 4(16), 10-25. http://dx.doi.org/10.35631/ijlgc.416002

Khan, M. I., Saleh, M. A., & Quazi, A. (2021). Social media adoption by health professionals: A TAM-based study. Informatics, 8(1), 6. http://dx.doi.org/10.3390/informatics8010006

Kline, R. B. (2023). Principles And Practice Of Structural Equation Modeling. Guilford publications.

Liu, X., Min, Q., & Han, S. (2020). Understanding users’ continuous content contribution behaviours on microblogs: An integrated perspective of uses and gratification theory and social influence theory. Behaviour & Information Technology, 39(5), 525-543. https://doi.org/10.1080/0144929X.2019.1603326

Mäntymäki, M., & Riemer, K. (2014). Digital natives in social virtual worlds: A multi-method study of gratifications and social influences in Habbo Hotel. International Journal Of Information Management, 34(2), 210-220. https://doi.org/10.1016/j.ijinfomgt.2013.12.010

Mokmin, N. A. M., & Ibrahim, N. A. (2021). The evaluation of chatbot as a tool for health literacy education among undergraduate students. Education and Information Technologies, 26(5), 6033-6049. https://doi.org/10.1007/s10639-021-10542-y

Mukti, O. F. W., & Putri, N. K. (2021). Social media analytics: Instagram utilization for delivering health education messages to young adult in Indonesia. Journal promkes: the indonesian Journal Of Health Promotion And Health Education, 9(1), 35-43. https://doi.org/10.20473/jpk.V9.I1.2021.36-43

Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological Bulletin, 105(3), 430-445. https://doi.org/10.1037/0033-2909.105.3.430

Nadzir, M. M. (2019). Proposed e-government 2.0 engagement model based on social media use in government agencies. In 2019 IEEE conference on e-learning, e-management & e-services (IC3e) (pp. 16-19). IEEE. https://doi.org/10.1109/IC3e47558.2019.8971778

Naranjo-Zolotov, M., Oliveira, T., & Casteleyn, S. (2018). Citizens’ intention to use and recommend e-participation: Drawing upon UTAUT and citizen empowerment. Information Technology & People, 32(2), 364-386. https://doi.org/10.1108/ITP-08-2017-0257

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory. New York: McGraw-Hill.

Rahim, A., A. I., Ibrahim, M. I., A. Salim, F. N., & Ariffin, M. A. I. (2019). Health information engagement factors in Malaysia: A content analysis of facebook use by the ministry of health in 2016 and 2017. International Journal Of Environmental Research And Public Health, 16(4), 591. https://doi.org/10.3390%2Fijerph16040591

Rajaratnam, U. D. (2009). Role of traditional and online media in the 12th general election, Malaysia. The Journal of the South East Asia Research Centre for Communications and Humanities, 1(1), 33-58.

Rasoolimanesh, S. M. (2022). Discriminant validity assessment in PLS-SEM: A comprehensive composite-based approach. Data Analysis Perspectives Journal, 3(2), 1-8.

Rigdon, E. E. (2012). Rethinking partial least squares path modeling: In praise of simple methods. Long Range Planning: International Journal Of Strategic Management, 45(5-6), 341-358. https://doi.org/10.1016/j.lrp.2012.09.010

Rubin, A. M. (2009). Uses-and-gratifications perspective on media effects. In Media Effects (pp. 181-200). Routledge.

Sathyanarayana, S., & Mohanasundaram, T. (2024). Fit Indices in Structural Equation Modeling and Confirmatory Factor Analysis: Reporting Guidelines. Asian Journal Of Economics, Business And Accounting, 24(7), 561-577. https://doi.org/10.9734/ajeba/2024/v24i71430

Sawalha, S., Al-Jamal, M., & Abu-Shanab, E. (2019). The influence of utilising Facebook on e-government adoption. Electronic Government, An International Journal, 15(1), 1-20. http://dx.doi.org/10.1504/EG.2019.10015532

Sekaran, U., & Bougie, R. (2016). Research methods for business: a skill building approach. John wiley & sons.

Stafford, M. R., & Stafford, T. F. (1996). Mechanical commercial avoidance: A uses and gratifications perspective. Journal Of Current Issues & Research In Advertising, 18(2), 27-38. https://doi.org/10.1080/10641734.1996.10505049

Syn, S. Y. (2021). Health information communication during a pandemic crisis: Analysis of CDC Facebook Page during COVID-19. Online Information Review, 45(4), 672-686. https://doi.org/10.1108/OIR-09-2020-0416

Tha’er Majali, M. A., Omar, A., Alsoud, M., & Alhassan, I. (2021). Social media use as health awareness tool: A study among healthcare practitioners. Multicultural Education, 7(2), 1-5. http://dx.doi.org/10.5281/zenodo.4487282

van der Giessen, M., & Bayerl, P. S. (2022). Designing for successful online engagement: Understanding technological frames of citizen and police users of community policing platforms. Government Information Quarterly, 39(3), 101711. https://doi.org/10.1016/j.giq.2022.101711

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540

Yang, Y., Deng, W., Zhang, Y., & Mao, Z. (2021). Promoting public engagement during the covid-19 crisis: how effective is the wuhan local government’s information release? International Journal Of Environmental Research And Public Health, 18(1), 118. https://doi.org/10.3390/ijerph18010118

Yuan, Y. P., Dwivedi, Y. K., Tan, G. W. H., Cham, T. H., Ooi, K. B., Aw, E. C. X., & Currie, W. (2023). Government digital transformation: understanding the role of government social media. Government Information Quarterly, 40(1), 101775. https://doi.org/1016/j.giq.2022.101775

Zheng, Y., Zhao, K., & Stylianou, A. (2013). The impacts of information quality and system quality on users' continuance intention in information-exchange virtual communities: An empirical investigation. Decision Support Systems, 56, 513-524. https://doi.org/10.1016/j.dss.2012.11.008

Descargas

Publicado

30-12-2024

Cómo citar

Lai Sien, K., Ahmad, M., & Sue Lyn, O. (2024). Comprender la participación pública en las redes sociales gubernamentales: un enfoque basado en modelos de ecuaciones estructurales. REICE: Revista Electrónica De Investigación En Ciencias Económicas, 12(24), 369–398. https://doi.org/10.5377/reice.v12i24.20096

Número

Sección

Artículos de Investigación

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.