Study on equivalence relationships in the different number domains with one and two operations

Authors

DOI:

https://doi.org/10.5377/esteli.v13i49.17887

Keywords:

Equivalence relations, number domains, structure, operations, properties

Abstract

This paper deals with the study of equivalence relations in different numerical domains involving one and two operations. It is known that equivalence relations have an essential role in the analysis and study of numerical sets, in turn they allow to establish connections between elements within a given set. The main objective of this study is to provide an in-depth understanding of equivalence relations in the construction of various domains (N←Z←Q←R) and to examine how they influence their structure and properties. This inclusive conjunctive hierarchy shows how numerical sets are constructed in a stepwise manner, extending the properties and characteristics of previous sets. The construction of these domains is fundamental in mathematics and has applications in a variety of fields, from basic arithmetic to advanced mathematical analysis. In addition, the definitions and applications of these equivalence relations will be explored, and the implications they have in the proof of different theorems are investigated. On the other hand, through this analysis, we seek to contribute to the advancement of the theory of numerical sets, providing useful conceptual tools for the study of these domains. It is also expected that this article will provide a solid basis for future research in the field of equivalence relations within the different numerical domains, likewise that the properties of an equivalence relation by means of the union and intersection operations using equivalence relations and transitive envelopes will generate a better understanding of each structure and in general of these fundamental mathematical systems.

Downloads

Download data is not yet available.

References

Asghari. (2005). Equivalence: An Attempt at a History of the Idea [Equivalencia: un intento de historia de la idea]. https://doi.org/https://philsci-archive.pitt.edu/14261/1/Equivalence%20An%20Attempt%20at%20a%20History%20of%20the%20Idea.pdf

Asghari, A. H. (2008). Experiencing equivalence but organizing order.

Curveira, D., & Bravo, G. (2013). Tratamiento de Conceptos Matemáticos y su repercusión en el proceso de formación profesional. Universidad y Sociedad, 10.

Gónzalez, F. (2004). Apuntes de Matemática Discreta y Relaciones de Equivalencia. Madrid: Universidad de Cadíz.

Herrera, A., & Cisneros, I. (2023). Itinerario genético de las relaciones de equivalencia en la escuela y la vida diaria. Revista Científica de FAREM - Estelí. Medio Ambiente, tecnología y desarrollo humano(45), 148–170. https://doi.org/https://doi.org/10.5377/farem.v12i45.16042

Joyce, D. (12 de Enero de 1996). Elementod de Euclide. Libro 1. Nociones Comunes. http://ficus.pntic.mec.es/~jgog0066/pitag_web/noccom.html

Kennet, R. (2004). Matmemática Discretas y sus aplicaciones. Madrid: McGRAW-HILL/Interamericana de España S. A. U.

Koulikov. (1982). Algébre et théorie des nombres. Francia: Mir.

Revilla, F. (2010). Cursos Matematicos - Relaciones de Equivalencia. https://doi.org/https://pdfcoffee.com/relaciones-de-equivalencia-4-pdf-free.html

Rojo, A. (1996). Algebra I. Buenos Aires: El Ateneo.

Published

20-05-2024

How to Cite

Herrera Herrera, A. A. (2024). Study on equivalence relationships in the different number domains with one and two operations. Revista Científica Estelí, 13(49), 94–110. https://doi.org/10.5377/esteli.v13i49.17887

Issue

Section

EDUCATION SCIENCES

Most read articles by the same author(s)

Similar Articles

<< < 14 15 16 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.