Risk Probabilities of Mercury Exposure in Fishing Communities in the Great Lakes Basin of Nicaragua

Authors

  • Francisco José Picado Pavón Universidad Nacional Autónoma de Nicaragua, Managua. Centro para la Investigación en Recursos Acuáticos de Nicaragua, UNAN-Managua/CIRA, Nicaragua. https://orcid.org/0000-0002-3698-5214
  • Rommel José Lacayo Morales Universidad Nacional Autónoma de Nicaragua, Managua. Centro para la Investigación en Recursos Acuáticos de Nicaragua, UNAN-Managua/CIRA, Nicaragua. https://orcid.org/0000-0002-3585-6568
  • Xaviera de Jesús Méndez Doña Universidad Nacional Autónoma de Nicaragua, Managua. Centro para la Investigación en Recursos Acuáticos de Nicaragua, UNAN-Managua/CIRA, Nicaragua. https://orcid.org/0000-0001-6568-2717

DOI:

https://doi.org/10.5377/esteli.v13i50.18482

Keywords:

Exposure, lake, mercury, fish, risk

Abstract

Environmental contamination by mercury (Hg) is highly toxic and results in the detriment of aquatic ecosystems, as well as in negative effects on human health. The objective of this research was to demonstrate the risk probabilities that the fishing communities of the Great Lakes of Nicaragua have when consuming fish with Hg from these ecosystems. For this purpose, it was necessary to diagnose the presence of mercury in Lake Cocibolca. Between January and June 2022, water and sediments were collected from the lake, fish were acquired from local fish stocks, Hg levels in water, sediments and fish were analyzed, and surveys were applied to four communities in the Great Lakes basin to obtain information on fish consumption and anthropometric data for risk analysis. The results show a low bioavailability of Hg in the Great Lakes of Nicaragua, however, the Hg content of the fish analyzed is higher than that of fish from non-polluted environments (<0.008) mg/kg. The Hg content in fish (0.008 to 0.475) mg Hg/kg is significantly lower (p<0.0001, α =0.05) in Lake Cocibolca. Fortunately, the risk probabilities associated with fish consumption are low (<4.4%) for the studied communities in the Lake Cocibolca basin. However, the risk probabilities for the fishing communities of the Lake Xolotlán basin suggest monitoring the safety, in terms of Hg content, of these hydrobiological resources.

Downloads

Download data is not yet available.

References

Astorqui, I. (1976). Peces de la cuenca de los grandes lagos de Nicaragua. Investigations of the Ichthyofauna of Nicaraguan Lakes. https://digitalcommons.unl.edu/ichthynicar/14

Backstrom, C. H., Buckman, K., Molden, E., & Chen, C. Y. (2020). Mercury Levels in Freshwater Fish: Estimating Concentration with Fish Length to Determine Exposures Through Fish Consumption. Archives of Environmental Contamination and Toxicology, 78(4), 604-621. https://doi.org/10.1007/s00244-020-00717-y

Bale, A. E. (2000). Modeling Aquatic Mercury Fate in Clear Lake, Calif. Journal of Environmental Engineering, 126(2), 153-163. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:2(153)

Barone, G., Storelli, A., Garofalo, R., Mallamaci, R., & Storelli, M. M. (2022). Residual Levels of Mercury, Cadmium, Lead and Arsenic in Some Commercially Key Species from Italian Coasts (Adriatic Sea): Focus on Human Health. Toxics, 10(5), Article 5. https://doi.org/10.3390/toxics10050223

Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: A general review. Chemosphere, 40(12), 1335-1351. https://doi.org/10.1016/S0045-6535(99)00283-0

Cavalleri, A., & Gobba, F. (1998). Reversible Color Vision Loss in Occupational Exposure to Metallic Mercury. Environmental Research, 77(2), 173-177. https://doi.org/10.1006/enrs.1997.3814

CCME. (2003). Canadian Water Quality Guidelines for the Protection of Aquatic Life—Mercury—Inorganic mercury and methylmercury. https://ccme.ca/en/res/mercury-inorganic-mercury-and-methylmercury-en-canadian-water-quality-guidelines-for-the-protection-of-aquatic-life.pdf

Chen, L., Li, F., Huang, W., Li, Z., & Chen, M. (2019). Evaluation of Mercury Transformation and Benthic Organisms Uptake in a Creek Sediment of Pearl River Estuary, China. Water, 11(6), Article 6. https://doi.org/10.3390/w11061308

Cohen, J. T., Bellinger, D. C., & Shaywitz, B. A. (2005). A Quantitative Analysis of Prenatal Methyl Mercury Exposure and Cognitive Development. American Journal of Preventive Medicine, 29(4), 353-353.e24. https://doi.org/10.1016/j.amepre.2005.06.007

Compeau, G. C., & Bartha, R. (1985). Sulfate-Reducing Bacteria: Principal Methylators of Mercury in Anoxic Estuarine Sediment. Applied and Environmental Microbiology. https://doi.org/10.1128/aem.50.2.498-502.1985

de Matos, L. S., Correa, A. S. A. S., da Silva, S. A. A., Muniz, C. C., & Ignacio, A. R. A. (2021). Mercury concentrations in fish and human health assessment in preflood phase of a hydro dam in Teles Pires River, Southern Brazilian Amazon. Elementa: Science of the Anthropocene, 9(1), 020. https://doi.org/10.1525/elementa.2021.020

Dórea, J. G., & Marques, R. C. (2016). Mercury levels and human health in the Amazon Basin. Annals of Human Biology, 43(4), 349-359. https://doi.org/10.1080/03014460.2016.1192682

Effler, S. W., & Bloom, N. S. (1990). Seasonal variability in the Mercury speciation of Onondaga Lake (New York). Water, Air, and Soil Pollution, 53(3), 251-265. https://doi.org/10.1007/BF00170741

Gill, G. A., & Bruland, K. W. (1990). Mercury speciation in surface freshwater systems in California and other areas. Environmental Science & Technology, 24(9), 1392-1400. https://doi.org/10.1021/es00079a014

Gilmour, C. C., & Henry, E. A. (1991). Mercury methylation in aquatic systems affected by acid deposition. Environmental Pollution, 71(2), 131-169. https://doi.org/10.1016/0269-7491(91)90031-Q

Glover, J. B., Domino, M. E., Altman, K. C., Dillman, J. W., Castleberry, W. S., Eidson, J. P., & Mattocks, M. (2010). Mercury in South Carolina Fishes, USA. Ecotoxicology, 19(4), 781-795. https://doi.org/10.1007/s10646-009-0455-6

Grandjean, P., Budtz-Jørgensen, E., White, R. F., Jørgensen, P. J., Weihe, P., Debes, F., & Keding, N. (1999). Methylmercury Exposure Biomarkers as Indicators of Neurotoxicity in Children Aged 7 Years. American Journal of Epidemiology, 150(3), 301-305. https://doi.org/10.1093/oxfordjournals.aje.a010002

Harada, M. (1995). Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Critical Reviews in Toxicology. https://doi.org/10.3109/10408449509089885

Hina, N., Riaz, R., Ali, U., Rafique, U., & Malik, R. N. (2021). A Quantitative Assessment and Biomagnification of Mercury and Its Associated Health Risks from Fish Consumption in Freshwater Lakes of Azad Kashmir, Pakistan. Biological Trace Element Research, 199(9), 3510-3526. https://doi.org/10.1007/s12011-020-02479-z

Lacayo, M., Cruz, A., Lacayo, J., & Fomsgaard, I. (1991). Mercury contamination in Lake Xolotlán (Managua). Hydrobiological Bulletin, 25(2), 173-176. https://doi.org/10.1007/BF02291251

Lawson, N. M., & Mason, R. P. (1998). Accumulation of mercury in estuarine food chains. Biogeochemistry, 40(2), 235-247. https://doi.org/10.1023/A:1005959211768

Li, Y., & Cai, Y. (2013). Progress in the study of mercury methylation and demethylation in aquatic environments. Chinese Science Bulletin, 58(2), 177-185. https://doi.org/10.1007/s11434-012-5416-4

Lindström, M. (2001). Distribution of particulate and reactive mercury in surface waters of Swedish forest lakes—An empirically based predictive model. Ecological Modelling, 136(1), 81-93. https://doi.org/10.1016/S0304-3800(00)00382-3

Magour, S., Mäser, H., & Greim, H. (1987). The Effect of Mercury Chloride and Methyl Mercury on Brain Microsomal Na + ‐K + ‐ATPase after Partial Delipidisation with Lubrol®. Pharmacology & Toxicology, 60(3), 184-186. https://doi.org/10.1111/j.1600-0773.1987.tb01730.x

Mills, N., Weber, M. J., Pierce, C. L., & Cashatt, D. (2019). Factors influencing fish mercury concentrations in Iowa rivers. Ecotoxicology, 28(2), 229-241. https://doi.org/10.1007/s10646-019-02017-1

MINSA, MARENA, CIRA/UNAN-Managua, & JICA. (2017). Repùblica de Nicaragua Proyecto para el Fortalecimiento de Capacidades en el Estudio y Análisis del Mercurio Informe Final del Proyecto. https://openjicareport.jica.go.jp/pdf/1000033590_01.pdf

Morel, F. M. M., Kraepiel, A. M. L., & Amyot, M. (1998). THE CHEMICAL CYCLE AND BIOACCUMULATION OF MERCURY. Annual Review of Ecology, Evolution, and Systematics, 29(Volume 29, 1998), 543-566. https://doi.org/10.1146/annurev.ecolsys.29.1.543

Myers, G. J., Davidson, P. W., Cox, C., Shamlaye, C., Cernichiari, E., & Clarkson, T. W. (2000). Twenty-Seven Years Studying the Human Neurotoxicity of Methylmercury Exposure. Environmental Research, 83(3), 275-285. https://doi.org/10.1006/enrs.2000.4065

Picado, F., Mendoza, A., Cuadra, S., Barmen, G., Jakobsson, K., & Bengtsson, G. (2010). Ecological, Groundwater, and Human Health Risk Assessment in a Mining Region of Nicaragua. Risk Analysis, 30(6), 916-933. https://doi.org/10.1111/j.1539-6924.2010.01387.x

PNUMA. (2005). EVALUACIÓN MUNDIAL SOBRE EL MERCURIO. https://saludsindanio.org/sites/default/files/documents-files/1401/Evaluacion_Mundial_Mercurio.pdf

Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter––a review. Chemosphere, 55(3), 319-331. https://doi.org/10.1016/j.chemosphere.2003.11.011

Slotton, D., Ayers, S., Suchanek, T., Weyand, R., & Liston, A. (2004). Mercury Bioaccumulation and Trophic Transfer in the Cache Creek Watershed, California, in Relation to Diverse Aqueous Mercury Exposure Conditions.

Watras, C. J., Back, R. C., Halvorsen, S., Hudson, R. J. M., Morrison, K. A., & Wente, S. P. (1998). Bioaccumulation of mercury in pelagic freshwater food webs. Science of The Total Environment, 219(2), 183-208. https://doi.org/10.1016/S0048-9697(98)00228-9

Watras, C. J., & Huckabee, J. W. (1994). Mercury Pollution Integration and Synthesis. CRC Press.

Watras, C. J., Morrison, K. A., Hudson, R. J. M., Frost, T. M., & Kratz, T. K. (2000). Decreasing Mercury in Northern Wisconsin: Temporal Patterns in Bulk Precipitation and a Precipitation-Dominated Lake. Environmental Science & Technology, 34(19), 4051-4057. https://doi.org/10.1021/es000991g

Wright, D. A., & Welbourn, P. (Eds.). (2002). Metals and other inorganic chemicals. En Environmental Toxicology (pp. 249-348). Cambridge University Press. https://doi.org/10.1017/CBO9780511805998.008

Yorifuji, T., Tsuda, T., Inoue, S., Takao, S., Harada*, M., & Kawachi, I. (2013). Critical Appraisal of the 1977 Diagnostic Criteria for Minamata Disease. Archives of Environmental & Occupational Health, 68(1), 22-29. https://doi.org/10.1080/19338244.2011.627894

Published

08-08-2024

How to Cite

Picado Pavón, F. J., Lacayo Morales, R. J., & Méndez Doña, X. de J. (2024). Risk Probabilities of Mercury Exposure in Fishing Communities in the Great Lakes Basin of Nicaragua. Revista Científica Estelí, 13(50), 180–197. https://doi.org/10.5377/esteli.v13i50.18482

Issue

Section

ENVIRONMENTAL SCIENCES

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.